Interfacing the PD243X Alphanumeric Programmable Display ${ }^{\text {TM }}$ with the SAB80515/SAB80535 Microcontroller

To Produce a Bidirectional, Speed Regulated
Moving Message Display by Using the SAB80515/SAB80535's Timer 2 \& 8-Bit Converter
\section*{Appnote 49}

Abstract

This application note introduces the user to one of the features of Timer 2 and A/D converter of the SAB 80515/535. Included in this application note is a description of both the software and hardware implementations of the SAS 80515/535 to use its Timer 2 and 8 -bit A / D converter for the bidirectional, speed regulated moving message display. The program listing demonstrates how the Timer 2 and the 8-bit A/D converter of the SAB 80515/535 can be combined to generate time delays controlled by analog levels. The hardware circuitry shows an interface of the SAP 80515/535 with a simulated analog input, a 2 kbyte EPROM, and intelligent display chips of Siemens used in memory mapped 1/0 scheme. The SAB 80515/535 microcontroller with on-chip A/D converter and a 16-bit Timer (Timer 2) with reload capability offers a solution which can be applied to a wide range of industrial applications. These applications vary from analog controlled digital delays to controlled frequency converters for pulse width modulation. In the present application example, the above features of the SAB 80515/535 are used in conjunction to generate the software delays. The software delay results in varying the voltage level of the analog signal applied to the A/D converter of the SAB 80515/535.

A/D Converter

The SAB 80515/535 provides an 8-bit A/D converter with eight multiplexed analog input channels on-chip. In addition, the A/D converter has a sample and hold circuit and offers the feature of software programmable reference voltages. For the conversion, the method of successive approximation with a capacitor network is used.
Figure 1 shows a block diagram of the A / D converter. There are three user-accessible special function registers:
—ADCON (A/D converter control register)
—ADDAT (A/D converter data register)
-DAPR (D/A converter program register) for the programmable reference voltages.

Special function register ADCON is used to select one of the eight analog input channels to be converted, to specify a single or continuous conversion, and to check the status bit BSY which signals whether a conversion is in progress or not.
The special function register ADDAT holds the converted digital 8 -bit data result. The data remains in ADDAT until it is overwritten by the next converted data. The new converted value will appear in ADDAT in the 15 th machine cycle after a conversion has been started. ADDAT can be read and written to under software control. If the A/D converter of the SAB 80515/535 is not used, register ADDAT can be used as an additional general-purpose register.
The special function register DAPR is provided for programming the internal reference voltages IVAREF and IVAGND. In the present application DAPR holds a value of 00 H . For this value of DAPR, IVAREF and IVAGND are the same as VAREF and VAGND respectively.

A/D Conversion

A conversion is started by writing to the special function register DAPR. A "Write-to-DAPR" will start a new conversion even if a conversion is currently in progress. The conversion begins with the next machine cycle. The busy flag BSY will be set in the same machine cycle as the "write-to-DAPR" operation occurs. If the value written to DAPR is $00 H$, meaning that no adjustment of the internal reference voltages is desired, the conversion needs 15 machine cycles to be completed. Thus, the conversion time is $15 \mu \mathrm{~s}$ for 12 MHz oscillator frequency.
After a conversion has been started by writing into the special function register DAPR, the analog voltage at the selected input channel is sampled for 5 machine cycles ($5 \mu \mathrm{~s}$ at 12 MHz oscillator frequency), which will then be held at the sampled level for the rest of the conversion time.

The external analog source must be strong enough to source the current in order to load the sample \& hold capacitance, being 25 pF , within those 5 machine cycles.

Figure 1. Block diagram of A/D converter

Conversion of the sampled analog voltage takes place between the 6 th and 15 th machine cycle after sampling has been completed. In the 15th machine cycle the converted result is moved to ADDAT.

Timer 2

The SAB 80515 has three 16 -bit Timer/Counters: Timer 0, Timer 1 and Timer 2. These Timers can be configured to operate either as

Figure 2. Functional diagram of Timer 2 in reload mode

timers or event counters. Timer 2 is the time base of the programmable Timer/Counter Register Array (PTRA) unit. In addition to the operational modes "Timer" or "counter", Timer 2, being the time base for the PTRA unit, provides the features of:
—16-bit reload
-16-bit compare
—16-bit capture
The reload mode of Timer 2 is used in this application to generate software delays. For explanation of the other modes please refer to the users' manual.

Reload

The reload mode for Timer 2 is selected by bits T2R0 and T2R1 in special function register T2CON as illustrated in Table 1. In mode 0, when Timer 2 rolls over from all 1s to all 0s, it not only sets TF2 but also causes the Timer 2 registers to be loaded with the 16-bit value in the CRC (compare/reload/capture) register which is preset by software.
The reload will happen in the same machine cycle in which TF2 is set, thus overwriting the count value 0000 H .

Table 1. Timer 2 reload mode selection

T2RI	T2R0	Mode
0	X	Reload Disabled
1	0	Mode 0: Auto-Reload upon Timer 2 Overflow (TF2)
1	1	Mode 1: Reload upon Falling Edge at Pin T2EX/P1.5

PD2435

The PD2435 is a CMOS 4-character 5×7 dot matrix alphanumeric programmable display with ROM to decode 128 ASCII alphanumeric characters and enough RAM to store the display's complete four digit ASCII message with software programmable attributes. The CMOS IC incorporates special interface control circuitry to allow the user to control the module as a fully supported microprocessor peripheral.

Microprocessor Interface

The interface to the microprocessor is through the address lines (A0-A2), the data bus (D0-D7), two chip select lines $(\overline{\mathrm{CEO}}, \mathrm{CE} 1)$, and $(\overline{\mathrm{RD}})$ and $(\overline{\mathrm{WR}})$ lines. The $\overline{\mathrm{CEO}}$ should be held low and CE1 held high when executing a read or write to a specific PD243X device. The read and write lines are both active low. A valid write will enable the data as input lines.

Programming the PD2435

There are five registers within the PD2435. Four of the registers are used to hold the ASCII code of the four display characters. The fifth register is the Control Word, which is used to blink, blank, clear or dim the entire display to change the presentation (attributes) of individual characters.

Figure 3. PD2435 block diagram showing the major blocks and internal registers

Application

The speed regulated moving message display is an example where a digitized value of the controlling analog signal is used to compute a reload value for the Timer 2. The Timer 2 is operated in mode 0 where this reload value becomes a starting point for the Timer to count up. On overflow the Timer automatically takes the restart value for counting from reload register CRC. While the Timer is counting up, a new reload value is computed using the present A/D value.

Hardware

The circuit used in this application has the advantage of requiring a minimum of components. The single chip microcomputer SAB 80535 operates in conjunction with four alphanumeric programmable display chips PD 2435 to form a 16-digit long display.
The ASCII-coded data is transferred from the SAB 80535 to the display ICs via the data port P0 and using the control signal WR (P3.6) of the SAB 80535. The address pins from the ports P0 and P2 of the SAB 80535 are used to address the EPROM as well as the display chips in a memory-mapped I/O scheme. The display chips are addressed as memory locations with the following addresses.

Display Chip	Control Register Address	Digits Address
1	1000 H	$1004 \mathrm{H}-1007 \mathrm{H}$
2	2000 H	$2004 \mathrm{H}-2007 \mathrm{H}$
3	4000 H	$4004 \mathrm{H}-4007 \mathrm{H}$
4	8000 H	$8004 \mathrm{H}-8007 \mathrm{H}$

A push button is interfaced to port P3.2 of the SAB 80535 to provide an external interrupt to the microcontroller.

Firmware Description

Besides controlling speed of the moving message, there is a provision to interrupt the moving message and roll it backwards to the beginning of the message. The microcontroller reads the code and the message to display from an EPROM 2716A interfaced to the ports P0 and P2 of the SAB 80535. A virtual image of the message is created in the internal RAM of the SAB 80535. Four display chips PD2435 are interfaced to the SAB 80535 in a memory-mapped scheme and can be addressed as external memory to the SAB 80535. The virtual image of the message in internal RAM of the SAB 80535 is used to manipulate data to be displayed on the display chips. The internal RAM used for the display can be viewed as an area divided into two portions:

1. For active display
2. As a data buffer

The active display area is the replica of the data being displayed on the display chips. In this case the 16-digit display would need 16 RAM locations which correspond to 16 digits currently being displayed. The data buffer contains the rest of the message which is not being displayed. The message is shifted character by character in the RAM area. When the message on the display moves from right to left, the RAM buffer acts in "First In First Out" mode, and when the message on the display moves from left to right, the data to the display from the microcontroller RAM buffer is supplied in the "Last In First Out" scheme.

Between display of every character there is a software delay which depends upon the level of the analog signal supplied to the ANO pin of the SAB 80535. The external interrupt 0 (at port P3.2) is used to interrupt the microcontroller to inform it that the message needs to be scrolled backwards. On getting this interrupt the software sets the flag bit 0 which remains set until the message is scrolled back to the beginning of the message.

List of Components

Name	Number
SAB 80535	1
2716 A	1
PD2435	4
12 MHz Crystal	1
74 LS 373	1
22 pF Capacitors	2
100 nF Capacitor	1
4.7 ff Capacitor	1
1 k Resistor	1
10 k Pot	1

Reference Material for ICs

1. SAB 80515/80535 User's Manual.
2. PD2435 Data-Sheet or Optoelectronic Data Book (1990).

Figure 4. Interface circuit

Figure 5. Program flow chart

Program listing

UDISP	'PD 2435 Display PROGRAM'					
	1	\$TITLE ('PD 2435 DISPLAY PROGRAM')				
	2	\$MOD515				
	3	\$NOSYMBOLS				
	4					
....	5	CSEG				
	6	\$DEBUG				
	7					
	8	ORG				
0000	9			OOH		
	10					
000002000 C	11		LJMP	BEGIN	;Jump on reset	
	12					
	13		This is the interrupt subroutine for INTO. This is used to set a flag which then indicates that the message needs to be rolled back.			
	14					
	15					
	16		;			
	17	'				
	18					
0003	19		ORG	03H		
	20					
0003 COEO	21		PUSH	ACC	;Set flag for external interrupt	
0005 D2D5	22		SETB	FO		
0007 D0E0	23		POP	ACC		
0009 C289	24		CLR	IEO		
000B 32	25		RETI			
	26					
	27		; MAIN PROGRAM			
	28		MAIN PROGRAM			
	29		;			
	30					
000C D282	31	BEGIN:	SETB	P3.2	;Set bit for INT0	
000E 758110	32		MOV	SP,\#10H		
0011 75D800	33		MOV	ADCON, \#00H	;Select analog channel 0	
	34					
0014 C2D5	35	OPTS:	CLR	F0	;Clear flag 0	
00167800	36		MOV	R3,\#00H	;Character pointer in the message	
0018 79FF	37		MOV	R1,\#0FFH	;R1 used as a flag	
001A 90F000	38		MOV	DPTR,\#OF000H	;Control register of all displays	
001D 7403	39		MOV	A,\#03H	;Control word for display	
001F F0	40		MOVX	@DPTR,A		
0020 9000C2	41		MOV	DPTR,\#(TEXT-1)	;Beginning of the text	
00237820	42		MOV	R0,\#20H	;Internal RAM location	
0025 7D65	43		MOV	R5,\#101	;A count for 101 characters	
00277420	44		MOV	A,\#20H	;ASCII for space	
0029 F6	45	BLANK:	MOV	@RO,A	;Fill all locations with blank	
002A 08	46		INC	R0		
002B DDFC	47		DJNZ	R5, BLANK		
	48					
002D 12006C	49	SHIF:	CALL	NEXTC	;Read the next character	
0030 20D501	50		JB	F0,TEMP	;Check if the interrupt was raised	
0033 0B	51		INC	R3	;If no interrupt	
0034 7D65	52	TEMP:	MOV	R5,\#101	;Character count in message	
00367820	53		MOV	R0,\#20H	;RAM location 20H	
0038 20D506	54		JB	FO,REV0		
003B C6	55	SHFT:	XCH	A,@R0	;If no interrupt	
003C 08	56		INC	R0	;Add the character	
003D DDFC	57		DJNZ	R5,SHFT	;To the top of the RAM buffer	
003F 0158	58		AJMP	CONTO		
00417421	59	REVO:	MOV	A,\#21H	;If there is no interrupt	
0043 2B	60		ADD	A, R3	;Offset for the RAM buffer	

0044 F8	61		MOV	R0,A	;Pointer in the RAM buffer
00457600	62		MOV	@R0,\#00H	;Displayed so far
00477820	63		MOV	RO,\#20H	;Beginning of the RAM buffer
0049 E6	64		MOV	A,@R0	;Read the character
004A COEO	65		PUSH	ACC	;Save it
004C 08	66	AGAIN:	INC	R0	;Next location in RAM buffer
004D E6	67		MOV	A,@R0	;Read the next character
004E 18	68		DEC	R0	;Back to first character
004F F6	69		MOV	@RO,A	;Replace with second character
005008	70		INC	R0	;Process repeats
0051 DDF9	71		DJNZ	R5,AGAIN	;Moving character backwards
005308	72		INC	R0	
00547600	73		MOV	@R0,\#00H	;End of character buffer
0056 D0E0	74		POP	ACC	;Restore character
00587820	75	CONTO:	MOV	RO,\#20H	;Beginning of character buffer
005A E9	76		MOV	A,R1	;Check if end of character buffer
005B 6087	77		JZ	OPTS	
005D 120071	78		CALL	OUTC	
0060 C2AF	79		CLR	IEN0.7	;Disable interrupt
0062 1200A4	80		CALL	WAITA	;Before delay
0065 75A881	81		MOV	IEN0,\#81H	;Enable interrupt
0068 D288	82		SETB	ITO	;INT0 control bit
006A 012D	83		AJMP	SHIF	
	84				
	85		; Th	outine moves a	acter of the message to ACC.
	86				
	87		,		
	88				
006C A3	89	NEXTC:	INC	DPTR	
006D 7400	90		MOV	A,\#0	
006F 93	91		MOVC	A,@A+DPTR	;Move the character to Acc.
007022	92		RET		
	93				
	94				
	95			routine displays	moves a character over the four digits of
	96			D2435 and then	ats for the next display chip and so on.
	97		;		
	98		,		
	99				
0071 C0E0	100	OUTC:	PUSH	ACC	
0073 C082	101		PUSH	DPL	
0075 C083	102		PUSH	DPH	
0077 7A04	103		MOV	R2,\#4	;For four digits (0 to 3) in a chip
0079901004	104		MOV	DPTR,\#1004H	;Digit 0 in first display chip
007C 120098	105		CALL	OUTCO	
007F 902004	106		MOV	DPTR,\#2004H	;Digit 0 in second display chip
0082120098	107		CALL	OUTCO	
0085904004	108		MOV	DPTR,\#4004H	;Digit 0 in third display chip
0088120098	109		CALL	OUTCO	
008B 908004	110		MOV	DPTR,\#8004H	;Digit 0 in fourth display chip
008E 120098	111		CALL	OUTCO	
0091 D083	112		POP	DPH	
00930082	113		POP	DPL	
0095 D0E0	114		POP	ACC	
009722	115116		RET		
	117		This is a nested subroutine. It moves a nonzero hex value (ASCII) from left to right of the four digit display.		
	118119				
	120		;		
	121		,		
	122				
0098 E6	123	OUTCO:	MOV	A,@R0	

[^0]Appnote 49

ASSEMBLY COMPLETE, 0 ERRORS FOUND

[^0]: © 2000 Infineon Technologies Corp. • Optoelectronics Division • San Jose, CA

